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Linear Dynamical Discrete-Time System with Noise

x(k + 1) = F (k)x(k) + G(k)u(k) + v(k)

y(k) = H(k)x(k) + w(k)

x(k) ∈ Rn denotes the system state at time tk = t0 + Tk
t0 denotes the initial time, T denotes the time step

u(k) ∈ Rm denotes the control input, e.g., velocity commands, torques, forces

y(k) ∈ Rp denotes the system output, e.g., values reported by sensors

F (k) ∈ Rn×n encodes the system dynamics

G(k) ∈ Rn×m describes how the inputs drive the dynamics

H(k) ∈ Rp×n describes how states are mapped into outputs
assumed to be full row rank for all k, although it may not be square

v(k) ∈ Rn denotes the process noise
assumed to be white Guassian noise with zero mean and covariance matrix V (k)

w(k) ∈ Rp denotes the measurement noise
assumed to be white Guassian noise with zero mean and covariance matrix W (k)
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Linear Kalman Filter

Linear Dynamical Discrete-Time System with Noise

x(k + 1) = F (k)x(k) + G(k)u(k) + v(k)

y(k) = H(k)x(k) + w(k)

Objective: Determine the “best” estimate of x(k) given a previous estimate x(k − 1)
together with the known input u(k) and output y(k)

Challenges

Presence of the unknown and unmeasurable noise vectors v(k) and w(k)

State cannot in general be directly determined from the outputs because H(k) may
not be invertible

Approach: State estimate is constructed using the time history of the known signals
y(k) and u(k) together with the known parameters F (k),G(k),H(k),V (k),W (k)
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A Simple Observer

Assume that there is no noise, i.e.,

x(k + 1) = F (k)x(k) + G(k)u(k)

y(k) = H(k)x(k)

Notation: x̂(k1|0 . . . k2) with k1 ≥ k2 denotes the value of the state estimate at time
step k1 given the output values y(0), . . . , y(k2)

Observer follows a two-step process:

1 Prediction
x̂(k + 1|0 . . . k) = F (k)x̂(k|0 . . . k) + G(k)u(k)

2 Update
Given the output y(k + 1), the system state is constrained to lie on the hyperplane

Ω = {x ∈ Rn : y(k + 1) = H(k + 1)x}

Choose the next estimate x̂(k + 1|0 . . . k + 1) to be the point in Ω that has the
shortest distance to the prediction x̂(k + 1|0 . . . k), i.e.,

x̂(k + 1|0 . . . k + 1) = argminx∈Ω||x , x̂(k + 1|0 . . . k)||

Why? x̂(k + 1|0 . . . k) is close to the actual state, and the actual state must be in Ω
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Computing the Update

Ω = {x : y(k + 1) = H(k + 1)x}

x̂(k + 1|0 . . . k)

∆x

∆x = x̂(k + 1|0 . . . k + 1)− x̂(k + 1|0 . . . k)
∆x must be orthogonal to Ω =⇒
aT∆x = 0 for any a that is parallel to Ω

1 A vector a ∈ Rn is parallel to Ω
⇐⇒ x + a ∈ Ω, ∀x ∈ Ω
⇐⇒ H(k + 1)a = 0

Gives rise to the null-space, i.e.,

NullSpace (H(k + 1)) = {a ∈ Rn : H(k + 1)a = 0}

2 A vector b ∈ Rn is orthogonal to Ω
⇐⇒ aTb = 0, ∀a ∈ NullSpace (H(k + 1))

⇐⇒ b ∈ RowSpace (H(k + 1))

Therefore,

∆x is orthogonal to Ω ⇐⇒ ∆x = H(k + 1)Tγ, for some γ ∈ Rp
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Computing the Update (cont.)

Let ν denote the innovation error, i.e.,

ν = y(k + 1)− H(k + 1)x̂(k + 1|0 . . . k)

Assume for now that γ can be written as a linear function of ν, i.e.,

γ = Kν, for some K ∈ Rp×p

Then

∆x = H(k + 1)Tγ

= H(k + 1)TKν

= H(k + 1)TK (y(k + 1)− H(k + 1)x̂(k + 1|0 . . . k))

Now we need to find K such that

y(k + 1) = H(k + 1)(x̂(k + 1|0 . . . k) + ∆x) =⇒

H(k + 1)∆x = y(k + 1)− H(k + 1)x̂(k + 1|0 . . . k) = ν =⇒

H(k + 1)H(k + 1)TKν = ν =⇒

K =
(
H(k + 1)H(k + 1)T

)−1

Does the inverse exist?

Erion Plaku (Robotics) 6



A Simple Observer: Putting it all together

Prediction
x̂(k + 1|0 . . . k) = F (k)x̂(k|0 . . . k) + G(k)u(k)

Update

x̂(k + 1|0 . . . k + 1) = x̂(k + 1|0 . . . k) + ∆x

= x̂(k + 1|0 . . . k) + H(k + 1)TKν

K =
(
H(k + 1)H(k + 1)T

)−1

ν = (y(k + 1)− H(k + 1)x̂(k + 1|0 . . . k))

What are some problems with the simple observer?

Update is always perpendicular to Ω

Estimate errors in direction parallel to Ω are never corrected

As a result, estimate x̂ will not in general converge to actual state x
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Before improving the simple observer . . . some statistics

Probability density function:

Pr [a ≤ X ≤ b] =

∫ b

x=a

f (x)dx

Expected value for a random vector X : S → Rn:

E(X ) =

∫
x∈Rn

xf (x)dx

Variance of a scalar random variable:

Var(X ) = E
(

(X − E(X ))2
)

= E(X 2)− (E(X ))2

Covariance among two scalar random variables:

Cov(X ,Y ) = E ((X − E(X ))(Y − E(Y )) = E(XY )− E(X )E(Y )

Covariance matrix:

Cov(X ) = E((X − E(X ))(X − E(X ))T ), i.e., Covij(X ) = Cov(Xi ,Xj)

Multivariate gaussian distribution with mean X̄ and covariance matrix P:

f (x ; X̄ ,P) =
1√

(2π)n|P|
e−

1
2

(x−X̄ )P−1(x−X̄ )T
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Observing with Probability Distributions

Assume that there is process noise but no measurement noise, i.e.,

x(k + 1) = F (k)x(k) + G(k)u(k) + v(k)

y(k) = H(k)x(k)

Recall that

H(k): assumed to be full row rank for all k, although it may not be square

v(k): assumed to be white Guassian noise with zero mean and covariance matrix V (k)

white here means v(k) is independent of v(k − 1) for all k

Objective is to generate both

a state vector estimate x̂(k|0 . . . k) and

a covariance matrix estimate P(k|0 . . . k)

Hence

Prediction will generate x̂(k + 1|0 . . . k) and P(k + 1|0 . . . k)

Update will generate the next estimate given x̂(k + 1|0 . . . k + 1) and
P(k + 1|0 . . . k + 1)
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Observing with Probability Distributions: Prediction Step

Predicted state vector:

x̂(k +1|0 . . . k) = F (k)x̂(k|0 . . . k)+G(k)u(k)+E(v(k)) = F (k)x̂(k|0 . . . k)+G(k)u(k)

Predicted covariance matrix:

P(k + 1|0 . . . k) = E
(

(x(k + 1)− x̂(k + 1|0 . . . k))(x(k + 1)− x̂(k + 1|0 . . . k)T
)

substituting x(k + 1) and x̂(k + 1|0 . . . k) yields

= E
(
F (k)(x(k)− x̂(k|0 . . . k))(x(k)− x̂(k|0 . . . k))TF (k)T

+2F (k)(x(k)− x̂(k|0 . . . k))v(k)T + v(k)v(k)T
)

= F (k)E
(

(x(k)− x̂(k|0 . . . k))(x(k)− x̂(k|0 . . . k))T )
)
F (k)T +

E
(
v(k)v(k)T

)
= F (k)P(k|0 . . . k)F (k)T + V (k)
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Observing with Probability Distributions: Update Step

Chose x̂(k + 1|0 . . . k + 1) to be the most likely point in the set

Ω = {x ∈ Rn : y(k + 1) = H(k + 1)x}

=⇒ Choose x ∈ Ω that maximizes the Gaussian distribution with mean
x̂(k + 1|0 . . . k) and covariance matrix P(k + 1|0 . . . k), i.e.,

f (x) =
exp

(
− 1

2
(x − x̂(k + 1|0 . . . k))P(k + 1|0 . . . k)−1(x − x̂(k + 1|0 . . . k))T

)√
(2π)n|P(k + 1|0 . . . k)|

=⇒ Choose x ∈ Ω that minimizes

(x − x̂(k + 1|0 . . . k))P(k + 1|0 . . . k)−1(x − x̂(k + 1|0 . . . k))T

Define new inner product and (Mahalanobis) distance in Rn as

〈x1, x2〉M = xT
1 P(k + 1|0 . . . k)−1x2

||x ||2M = 〈x , x〉M = xTP(k + 1|0 . . . k)−1x

Let ∆x = x̂(k + 1|0 . . . k + 1)− x̂(k + 1|0 . . . k).
So we want to find x̂(k + 1|0 . . . k + 1) such that

1 ||∆x ||M is minimized

2 (x̂(k + 1|0 . . . k) + ∆x) ∈ Ω
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Observing with Probability Distributions: Update Step (cont.)

||∆x ||M is minimized
=⇒ ∆x is orthogonal to Ω according to inner product 〈·, ·〉M
=⇒ For all a ∈ NullSpace(H(k + 1))

aP(k + 1|0 . . . k)−1(∆x) = 0

=⇒ ∆x ∈ ColumnSpace(P(k + 1|0 . . . k)H(k + 1)T )
=⇒ For some γ ∈ Rp

∆x = P(k + 1|0 . . . k)H(k + 1)Tγ

Let ν denote the innovation error, i.e.,

ν = y(k + 1)− H(k + 1)x̂(k + 1|0 . . . k)

Assume that γ can be written as a linear function of ν, i.e.,

γ = Kν, for some K ∈ Rp×p

Then ∆x = P(k + 1|0 . . . k)H(k + 1)TKν
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Observing with Probability Distributions: Update Step (cont.)

(x̂(k + 1|0 . . . k) + ∆x) ∈ Ω

=⇒ y(k + 1) = H(k + 1)(x̂(k + 1|0 . . . k) + ∆x)

=⇒ H(k + 1)∆x = ν

=⇒ H(k + 1)P(k + 1|0 . . . k)HTKν = ν

(since also ∆x = P(k + 1|0 . . . k)HTKν)

=⇒ K = (H(k + 1)P(k + 1|0 . . . k)H(k + 1)T )−1

Let
R = P(k + 1|0 . . . k)H(k + 1)TK

Then, the update for the state vector estimate is

x̂(k + 1|0 . . . k + 1) = x̂(k + 1|0 . . . k) + ∆x

= x̂(k + 1|0 . . . k) + P(k + 1|0 . . . k)H(k + 1)TKν

= x̂(k + 1|0 . . . k) + Rν

Update for the covariance matrix estimate

P(k + 1|0 . . . k + 1) = P(k + 1|0 . . . k)− RH(k + 1)P(k + 1|0 . . . k)
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Observing with Probability Distributions: Putting it all together

Prediction

x̂(k + 1|0 . . . k) = F (k)x̂(k|0 . . . k) + G(k)u(k)

P(k + 1|0 . . . k) = F (k)P(k|0 . . . k)F (k)T + V (k)

Update

x̂(k + 1|0 . . . k + 1) = x̂(k + 1|0 . . . k) + Rν

P(k + 1|0 . . . k + 1) = P(k + 1|0 . . . k)− RH(k + 1)P(k + 1|0 . . . k)

where

ν = y(k + 1)− H(k + 1)x̂(k + 1|0 . . . k)

R = P(k + 1|0 . . . k)H(k + 1)T (H(k + 1)P(k + 1|0 . . . k)H(k + 1)T )−1

What are some problems with this observer?

Since we assumed no sensor noise, the update equations can cause the covariance
matrix estimate to become singular

But if covariance matrix is singular, Gaussian distribution and Mahalanobis distance
are not defined since they rely on the inverse matrix

to address these problems. . . the kalman filter
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Linear Kalman Filter

x(k + 1) = F (k)x(k) + G(k)u(k) + v(k)

y(k) = H(k)x(k) + w(k)

Recall that

v(k),w(k): white Guassian noise with zero mean and covariance matrix V (k),W (k)

Prediction (no changes from before)

x̂(k + 1|0 . . . k) = F (k)x̂(k|0 . . . k) + G(k)u(k)

P(k + 1|0 . . . k) = F (k)P(k|0 . . . k)F (k)T + V (k)

Update: Changes due to the sensor noise term w(k)

Before, we knew that the constrained the next state estimate to be in Ω, so we used
the equation y(k + 1) = H(k + 1)x̂(k + 1|0 . . . k + 1) to find x̂(k + 1|0 . . . k + 1)

Now we only know that the output is drawn from a Gaussian distribution in Rp

with mean y(k + 1) and covariance matrix W (k)

So will first look for the most likely output y∗ given the prediction
(x̂(k + 1|0 . . . k),P(k + 1|0 . . . k)) together with the measured output y(k + 1)

After that, we can introduce the constraint y∗ = H(k + 1)x̂(k + 1|0 . . . k + 1) and
proceed as before
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Linear Kalman Filter (cont. 2)

Project the prediction into output space

State space distribution with mean x̂(k + 1|0 . . . k) and covariance matrix
P(k + 1|0 . . . k) projects into a Gaussian distribution in the output space Rp with mean

ŷ = H(k + 1)x̂(k + 1|0 . . . k)

and covariance matrix

Ŵ = E
[
(ŷ − y(k + 1))(ŷ − y(k + 1))T

]
= E

[
H(k + 1)(x̂(k + 1|0 . . . k)− x(k + 1))(x̂(k + 1|0 . . . k)− x(k + 1))TH(k + 1)T

]
= H(k + 1)P(k + 1|0 . . . k)H(k + 1)T
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Linear Kalman Filter (cont. 3)

y∗ is then the most likely point in the output space Rp given

(ŷ , Ŵ ): Gaussian distribution that results from projection the state prediction

(y(k + 1),W (k + 1)): Gaussian distribution that results from taking the measurement

y∗ will be the peak of the function that results from taking their product (since
distributions (ŷ , Ŵ ) and (y(k + 1),W (k + 1)) are independent)

Theorem: The product of two Gaussians (z1,C1) and (z2,C2) is proportional to a third
Gaussian (z3,C3), where

z3 = z1 + C1(C1 + C2)−1(z2 − z1)

C3 = C1 − C1(C1 + C2)−1C1

Then
y∗ = ŷ + Ŵ (Ŵ + W (k + 1))−1(y(k + 1)− ŷ)

We can also define
Ω∗ = {x ∈ Rn : y∗ = H(k + 1)x}

and proceed to find ∆x = x̂(k + 1|0 . . . k + 1)− x̂(k + 1|0 . . . k) that

minimizes ||∆x ||M and

satisisifes x̂(k + 1|0 . . . k + 1) ∈ Ω∗
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Linear Kalman Filter (cont. 4)

1. ||∆x ||M is minimized
=⇒ ∆x is orthogonal to Ω∗ according to inner product 〈·, ·〉M
=⇒ For some γ ∈ Rp: ∆x = P(k + 1|0 . . . k)H(k + 1)Tγ

Let ν be the innovation error

ν = y∗ − H(k + 1)x̂(k + 1|0 . . . k)

Assume that γ can be written as

γ = Kν, for some K ∈ Rp×p

Then ∆x = P(k + 1|0 . . . k)H(k + 1)TKν

2. (x̂(k + 1|0 . . . k) + ∆x) ∈ Ω

=⇒ y∗ = H(k + 1)(x̂(k + 1|0 . . . k) + ∆x)

=⇒ H(k + 1)∆x = ν

=⇒ H(k + 1)P(k + 1|0 . . . k)HTKν = ν

=⇒ K = (H(k + 1)P(k + 1|0 . . . k)H(k + 1)T )−1
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Linear Kalman Filter (cont. 5)

Therefore, from (1) and (2),

∆x = P(k + 1|0 . . . k)H(k + 1)TKν

where

K = (H(k + 1)P(k + 1|0 . . . k)H(k + 1)T )−1

ν = y∗ − H(k + 1)x̂(k + 1|0 . . . k)

y∗ = ŷ + Ŵ (Ŵ + W (k + 1))−1(y(k + 1)− ŷ)

Ŵ = H(k + 1)P(k + 1|0 . . . k)H(k + 1)T

ŷ = H(k + 1)x̂(k + 1|0 . . . k)

Some simplifications:

Kν = K(y∗ − H(k + 1)x̂(k + 1|0 . . . k))

= KŴ (Ŵ + W (k + 1))−1(y(k + 1)− ŷ)

= (Ŵ + W (k + 1))−1(y(k + 1)− ŷ)

Therefore, (with the shorthand notation H ≡ H(k + 1), P ≡ P(k + 1|0 . . . k))

∆x = PHT (HPHT + W (k + 1))−1(y(k + 1)− Hx̂(k + 1|0 . . . k))
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Linear Kalman Filter: Putting it all together

Prediction

x̂(k + 1|0 . . . k) = F (k)x̂(k|0 . . . k) + G(k)u(k)

P(k + 1|0 . . . k) = F (k)P(k|0 . . . k)F (k)T + V (k)

Update

x̂(k + 1|0 . . . k + 1) = x̂(k + 1|0 . . . k) + ∆x

= x̂(k + 1|0 . . . k) +

PHT (HPHT + W (k + 1))−1(y(k + 1)− Hx̂(k + 1|0 . . . k))

P(k + 1|0 . . . k + 1) = E
[
(x(k + 1)− x̂(k + 1|0 . . . k + 1))(x(k + 1)− x̂(k + 1|0 . . . k + 1))T

]
where H ≡ H(k + 1), P ≡ P(k + 1|0 . . . k)
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Example: Kalman Filter for Dead Reckoning

Consider a mobile robot constrained to move along a straight line.
Robot state x = (xr , vr )

T

xr : robot position
vr : robot velocity

Input control u: real-valued force applied to the robot.According to Newton’s law

dvr
dt

=
u

m

Approximated by the discrete time equation (T discretization rate (in seconds))

vr (k + 1)− vr (k)

T
=

u(k)

m
Therefore,

x(k + 1) =

[
1 T
0 1

]
︸ ︷︷ ︸

F (k)

x(k) +

[
0

T/m

]
︸ ︷︷ ︸

G(k)

u(k) + v(k)

where v(k) is white Gaussian noise with zero mean and covaraince matrix V
Suppose sensor measures velocity. Then,

y(k + 1) = [0, 1]︸ ︷︷ ︸
H(k)

x(k) + w(k)

where w(k) is white Gaussian noise with zero mean and covaraince matrix W
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