Introduction to Robotics

Localization

Erion Plaku

Department of Electrical Engineering and Computer Science
Catholic University of America

Linear Dynamical Discrete-Time System with Noise

x(k + 1) = F(k)x(k) + G(k)u(k) + v(k)
y(k) = H(k)x(k) + w(k)

m x(k) € R" denotes the system state at time &, = to + Tk
to denotes the initial time, T denotes the time step

m u(k) € R™ denotes the control input, e.g., velocity commands, torques, forces

m y(k) € RP denotes the system output, e.g., values reported by sensors

m F(k) € R™" encodes the system dynamics
m G(k) € R™™ describes how the inputs drive the dynamics

m H(k) € RP*" describes how states are mapped into outputs
assumed to be full row rank for all k, although it may not be square

m v(k) € R" denotes the process noise
assumed to be white Guassian noise with zero mean and covariance matrix V/(k)

m w(k) € RP denotes the measurement noise
assumed to be white Guassian noise with zero mean and covariance matrix W (k)

Erion Plaku (Robotics) 2

Linear Kalman Filter

Linear Dynamical Discrete-Time System with Noise
x(k + 1) = F(k)x(k) + G(k)u(k) + v(k)
y(k) = H(k)x(k) + w(k)

Objective: Determine the “best” estimate of x(k) given a previous estimate x(k — 1)
together with the known input u(k) and output y(k)

Challenges
m Presence of the unknown and unmeasurable noise vectors v(k) and w(k)

m State cannot in general be directly determined from the outputs because H(k) may
not be invertible

Approach: State estimate is constructed using the time history of the known signals
y(k) and u(k) together with the known parameters F(k), G(k), H(k), V(k), W (k)

Erion Plaku (Robotics) 3

A Simple Observer

Assume that there is no noise, i.e.,
x(k +1) = F(k)x(k) + G(k)u(k)

y(k) = H(k)x(k)

Notation: X(ki|0... k) with k1 > ko denotes the value of the state estimate at time
step ki given the output values y(0),...,y(k2)
Observer follows a two-step process:

Prediction

X(k+1]0... k) = F(k)x(k|0... k) + G(k)u(k)
Update
m Given the output y(k + 1), the system state is constrained to lie on the hyperplane
Q={xeR":y(k+1)=H(k+1)x}

m Choose the next estimate X(k + 1|0...k + 1) to be the point in Q that has the
shortest distance to the prediction %(k + 1]|0... k), i.e.,

%(k+1[0... k+ 1) = argmin,cqlx, X(k + 1[0... k)|

Why? %(k + 1]0...k) is close to the actual state, and the actual state must be in Q

Erion Plaku (Robotics) 4

Computing the Update

Ax=%(k+10...k+1)—x(k+1[0...k)
m Ax must be orthogonal to Q —
Q={z:y(k+1)=H(k+ 1)z} a’ Ax =0 for any a that is parallel to Q

A vector a € R" is parallel to Q
<— x4+a€eQ,Vxe
< H(k+1)a=0
Gives rise to the null-space, i.e.,

NullSpace (H(k + 1)) = {a € R" : H(k + 1)a = 0}

A vector b € R" is orthogonal to Q
<= a'b=0,Va € NullSpace (H(k + 1))
<= b € RowSpace (H(k + 1))

Therefore,

Ax is orthogonal to Q <= Ax = H(k +1)"~, for some v € R?

Erion Plaku (Robotics) 5

Computing the Update (cont.)

Let v denote the innovation error, i.e.,
v=y(k+1)— H(k+1)%(k +1]0... k)
Assume for now that =y can be written as a linear function of v, i.e.,
~= Ky, forsome K € RP*P
Then

Ax = Hk+1)Ty
H(k +1)"Kv
H(k + 1)K (y(k + 1) — H(k + 1)%(k + 1]0. .. k))

Now we need to find K such that
y(k+1)=H(k+1)(X(k+1|0... k) + Ax) =
Hk+1)Ax=y(k+1)— Hk+1)%(k+1|0... k) =v =
Hk+1)Hk+1)"Kv =v —
K= (H(k F1)H(k + 1)T) T Does the inverse exist?

Erion Plaku (Robotics) 6

A Simple Observer: Putting it all together

Prediction
X(k+1]0... k) = F(k)X(k|0... k) + G(k)u(k)
Update

f(k+10... k+1) %(k+1]0... k) + Ax

= R(k+1/0...k)+ H(k+1)"Kv
m K= (Hk+1)H(Kk+1)T) ™"
m v = (y(k+1) — H(k + 1)X(k + 1/0...k))

What are some problems with the simple observer?

m Update is always perpendicular to Q
m Estimate errors in direction parallel to Q are never corrected

m As a result, estimate X will not in general converge to actual state x

Erion Plaku (Robotics) 7

Before improving the simple observer ... some statistics

Probability density function:

Prla < X < b] :/b f(x)dx

Expected value for a random vector X : S — R"™:

E(X) = /xem" xf(x)dx

Variance of a scalar random variable:

Var(X) = E (X = E(X))?) = E(X*) = (E(X))?

Covariance among two scalar random variables:

Cov(X,Y)=E((X —EX)(Y — E(Y)) = E(XY)— E(X)E(Y)
Covariance matrix:

Cov(X) = E((X — E(X))(X — E(X))7), i.e., Covj(X) = Cov(Xi, X;)
Multivariate gaussian distribution with mean X and covariance matrix P:

f(X;)_(a) = ! 767%(X7X)P71(X7)_<)T

27)"|P|
Erion Plaku (Robotics) 8

Observing with Probability Distributions

Assume that there is process noise but no measurement noise, i.e.,
x(k 4+ 1) = F(k)x(k) + G(k)u(k) + v(k)

y(k) = H(k)x(k)
Recall that
m H(k): assumed to be full row rank for all k, although it may not be square

m v(k): assumed to be white Guassian noise with zero mean and covariance matrix V/ (k)
white here means v(k) is independent of v(k — 1) for all k

Objective is to generate both
m a state vector estimate X(k|0...k) and

m a covariance matrix estimate P(k|0... k)

Hence
m Prediction will generate X(k +1|0...k) and P(k +1/0...k)

m Update will generate the next estimate given X(k +1[0...k + 1) and
P(k+1[0...k+1)

Erion Plaku (Robotics) 9

Observing with Probability Distributions: Prediction Step

Predicted state vector:
K(k+1]0...k) = F(K)X(K|0. .. k)+ G(k)u(k)+E(v(k)) = F(K)X(k|0... k)+ G(k)u(k)
Predicted covariance matrix:
P(k+1/0...k) = E((x(k+1)—)?(k—&-l\O...k))(x(k—&-l)—§<(k+1\0...k)T)
substituting x(k + 1) and X(k + 1|0... k) yields
= E (F(k)(x(k) — %(k[0. .. k))(x(k) — %(k|0... k)" F(k)T
+2F (k) (x(k) — %(k[0. .. K))v(k)T + v(k)v(k)T)
= F(KE ((X(k) — X(k|0... k))(x(k) — X(K|0... k))T)) F(k)T +
E (v(k)v(k)T)
= F(k)P(k|0...k)F(k)" + V(k)

Erion Plaku (Robotics)

Observing with Probability Distributions: Update Step

Chose %(k 4+ 1|0...k + 1) to be the most likely point in the set
Q={xeR":y(k+1)=H(k+1)x}

—> Choose x € that maximizes the Gaussian distribution with mean
X(k +1/0... k) and covariance matrix P(k + 1]|0...k), i.e.,

exp (—3(x — &(k+1]0...k))P(k+1]0... k) *(x — &(k + 1]0...

)7

f(x) =
V/(2m)"|P(k + 1]0... k)]
= Choose x € Q that minimizes
(x = &(k+1[0...k)P(k+1[0... k) "(x — &(k +1[0... k)"
Define new inner product and (Mahalanobis) distance in R” as

(x1, %)y = XlTP(k-i-].|0...k)_1X2
(x,X) = x"P(k+1]0... k) 'x

11l

Let Ax = %(k+1[0...k+1) — X(k +1/0... k).

So we want to find X(k + 1|0... k + 1) such that
||Ax||m is minimized

(X(k+10...k)+ Ax) € Q

Erion Plaku (Robotics)

Observing with Probability Distributions: Update Step (cont.)

[|Ax||m is minimized
= Ax is orthogonal to Q according to inner product (,-),,
= For all a € NullSpace(H(k + 1))

aP(k+1/0... k)" (Ax) =0

= Ax € ColumnSpace(P(k +1]0...k)H(k +1)T)
— For some v € R”

Ax = P(k+1[0... k)H(k +1)"~
Let v denote the innovation error, i.e.,
v=y(k+1)— H(k+1)%(k +1]0...k)
Assume that 7 can be written as a linear function of v, i.e.,
v = Kv, forsome K ¢ RP*?

Then Ax = P(k+1]0... k)H(k +1)"Kv

Erion Plaku (Robotics) 12

Observing with Probability Distributions: Update Step (cont.)

= y(k+1)=H(k+ 1)(%(k +1]0... k) + Ax)
= Hk+1)Ax=v
= H(k+1)P(k+1/0...k)H Kv =v

(since also Ax = P(k+1]0...k)H Kv)

I

Let

K= (H(k+1)P(k+1[0...k)H(k+1)")™"

R=P(k+1]0...k)H(k +1)"K

Then, the update for the state vector estimate is

f(k+1/0... k+1) =

K(k+1]0... k) + Ax
K(k+1]0...k) + P(k+1/0... k)H(k + 1) Kv
%(k+100...k) + Rv

Update for the covariance matrix estimate

P(k+10... k+1) =

Erion Plaku (Robotics)

P(k+1[0...k) — RH(k +1)P(k + 1]0... k)

Observing with Probability Distributions: Putting it all together

Prediction
R(k+1]0...k) = F(k)X(k|0...k)+ G(k)u(k)
P(k+1[0...k) = F(k)P(k|0...k)F(k)" + V(k)
Update
f(k+10...k+1) = x(k+1]0...k)+ Rv
P(k+1]0...k+1) = P(k+1]0...k)— RH(k+1)P(k+1]0...k)
where
v = y(k+1)—H(k+1)%(k+1]0...k)
R = P(k+1|0...k)H(k+1)"(H(k+1)P(k+1]0... k)H(k+1)")7"

What are some problems with this observer?
m Since we assumed no sensor noise, the update equations can cause the covariance
matrix estimate to become singular
m But if covariance matrix is singular, Gaussian distribution and Mahalanobis distance
are not defined since they rely on the inverse matrix
to address these problems. . .the kalman filter

Erion Plaku (Robotics)

Linear Kalman Filter

x(k+ 1) = F(k)x(K) + G(K)u(k) + v(k)
y(k) = H(k)x(K) + w(k)

Recall that
m v(k), w(k): white Guassian noise with zero mean and covariance matrix V/(k), W (k)

Prediction (no changes from before)

(k+10...k) = F(k)X(k[0... k) + G(Kk)u(k)
P(k+1[0...k) = F(k)P(k|0...k)F(k)" + V(k)

Update: Changes due to the sensor noise term w(k)

m Before, we knew that the constrained the next state estimate to be in £, so we used
the equation y(k +1) = H(k + 1)%(k + 1]|0... k+ 1) to find X(k+1|0...k + 1)

m Now we only know that the output is drawn from a Gaussian distribution in R?
with mean y(k + 1) and covariance matrix W (k)

m So will first look for the most likely output y™ given the prediction
(%(k+1|0...k),P(k +1]0...k)) together with the measured output y(k + 1)

m After that, we can introduce the constraint y* = H(k + 1)%(k +1/0...k+ 1) and
proceed as before

Erion Plaku (Robotics) 15

Linear Kalman Filter (cont. 2)

m Project the prediction into output space

State space distribution with mean X(k + 1|0... k) and covariance matrix
P(k 4+ 1]0... k) projects into a Gaussian distribution in the output space R” with mean

= H(k+1)x(k+1]0...k)
and covariance matrix
W= E[(-yk+ 1))~ yk+1)]

E [H(k +1)(%(k41]0... k) — x(k + 1))(*(k + 1]0... k) — x(k + 1)) "H(k + 1)

H(k+1)P(k+1[0... k)H(k+1)"

Erion Plaku (Robotics) 16

Linear Kalman Filter (cont. 3)

y™ is then the most likely point in the output space R” given

] ()7, W) Gaussian distribution that results from projection the state prediction

m (y(k+1), W(k + 1)): Gaussian distribution that results from taking the measurement
y* will be the pezik of the function that results from taking their product (since
distributions (§, W) and (y(k + 1), W(k + 1)) are independent)

Theorem: The product of two Gaussians (z1, C1) and (z2, C2) is proportional to a third
Gaussian (z3, C3), where

zz = zn+G(G+ C2)71(Z2 — 1)
G G-GG+6)'a

Then o
y' =g+ WW 4+ W(k+1) " (v(k+1) - 9)
We can also define
Q" ={xeR":y" = H(k+1)x}
and proceed to find Ax = X(k+1]|0...k+ 1) — %(k + 1|0... k) that
m minimizes ||Ax||y and
m satisisifes X(k+1[0... k+ 1) € Q"

Erion Plaku (Robotics)

1. ||Ax||m is minimized

= Ax is orthogonal to Q* according to inner product (-
= For some v € RP: Ax = P(k+1[0...k)H(k +1)"y

Linear Kalman Filter (cont. 4)

>

Let v be the innovation error

v=y" —H(k+1)%(k+1]|0...k)

Assume that v can be written as

v = Kv, for some K € R"*P

Then Ax = P(k+1|0... k)H(k +1)"Kv

2. (X(k+1]0...k)+ Ax) € Q

Erion Plaku (Robotics)

=

=
=
=

y* = H(k +1)(%(k +1|0... k) + Ax)
H(k+1)Ax =v

H(k +1)P(k+1[0...k)H Kv = v

K= (H(k+1)P(k+1[0...k)H(k+1)")™"

Linear Kalman Filter (cont. 5)

Therefore, from (1) and (2),
Ax = P(k+1]0...k)H(k +1)"Kv

where

m K= (Hk+1)P(k+1[0...k)H(k+1)")""

my=y" —H(k+1)%(k+1]0...k)

my =9+ WW+ W(k+1) N y(k+1)—9)

m W =H(k+1)P(k+1]0... k)H(k +1)7

m) =H(k+1)&(k+1[0...k)
Some simplifications:

Kv = K(y" —H(k+1)%(k+1]0...k))

KW(W + W(k+1)" (y(k+1)—9)
(W+ W(k+1)" (v(k+1) - 9)

Therefore, (with the shorthand notation H = H(k + 1), P = P(k+1|0...k))

Ax = PHT(HPH™ + W(k + 1)) "(y(k + 1) — HX(k + 1]0...k))

Erion Plaku (Robotics) 19

Linear Kalman Filter: Putting it all together

Prediction

%(k+1[0...k) F(K)X(K|O... k) + G(Kk)u(k)
P(k+1[0...k) = F(k)P(k|0...k)F(k)" + V(k)

Update

X(k+1]0...k+1)

K(k+1]0... k) + Ax

= X(k+1/0...k)+

PHT(HPHT + W (k4 1)) '(y(k + 1) — HX(k + 1[0. .. k))
E|(x(k+1)—%(k+1/0...k+1))(x(k+1) — %(k+1]0...k

P(k+1]0...k+1)

where H= H(k +1), P= P(k+1[0...k)

Erion Plaku (Robotics)

Example: Kalman Filter for Dead Reckoning

Consider a mobile robot constrained to move along a straight line.
Robot state x = (xr, v,)T
m Xx.: robot position
m v,: robot velocity
Input control u: real-valued force applied to the robot.According to Newton's law

dv, u

dt ~ m
Approximated by the discrete time equation (T discretization rate (in seconds))
vi(k +1) — ve(k) u(k)

T m
Therefore,
k+1)= LT k 0 k k
k1) = | g x| g e+ V(R
—_—— —————
F(k) G(k)

where v(k) is white Gaussian noise with zero mean and covaraince matrix V
Suppose sensor measures velocity. Then,
y(k+1) =[0,1] x(k) + w(k)

—~—
H(k)

where w(k) is white Gaussian noise with zero mean and covaraince matrix W
Erion Plaku (Robotics) 21

